skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Crawford, Thomas_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract 1D multiferroic fibers are known to exhibit attractive characteristics, including enhanced magnetoelectric (ME) coupling compared to thin film and bulk architectures. A comprehensive understanding of composite fibers, however, has been hindered by the complexity of their structure, leading to limited reports. Here, clear and strong ME coupling is experimentally detected in a composite Janus nanofiber aggregate using second harmonic generation (SHG) polarimetry under different magnetic field orientations. The observation of such a pronounced effect using an all‐optical method has not been previously reported in multiferroic fibers. A series of global fits is performed to the SHG polarimetry results to investigate the behavior of nanofibers within an aggregate. We find the magnetically assembled fibers exhibit semi‐cylindrical alignment as well as the expected lengthwise alignment despite variations in size and composition from fiber to fiber. The ME coupling and the semi‐cylindrical alignment seen in SHG are further corroborated via X‐ray diffraction under similar magnetic field conditions. These findings contribute to the development of complex composite and multifunctional devices using multiferroic nanostructures as building blocks, even those with inhomogeneous shapes and geometries. 
    more » « less
  2. Abstract Colloidal magnetite nanoparticles self‐assemble onto a disk drive medium as directed by magnetic field gradients created where the medium magnetic moment switches direction over single nanometer distances. Here, it is shown that for two such reversals or transitions that are closely spaced, the nanoparticles self‐assemble into a single feature centered between the transitions, rather than forming separate features at the transitions, and the resulting 2D assembly achieves hexatic ordering. Langevin dynamics simulations are used to explain these results, and it is found that the detailed magnetic properties of the medium play a critical role in determining assembly location. Slight changes to solvent polarity disrupt the hexatic ordering and push the nanoparticles toward the transitions, suggesting an alternate mechanism to precisely tune the self‐assembly process. 
    more » « less
  3. Abstract The first very long baseline interferometry (VLBI) detections at 870μm wavelength (345 GHz frequency) are reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth and the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources observed on intercontinental baselines between telescopes in Chile, Hawaii, and Spain, obtained during observations in 2018 October. The longest-baseline detections approach 11 Gλ, corresponding to an angular resolution, or fringe spacing, of 19μas. The Allan deviation of the visibility phase at 870μm is comparable to that at 1.3 mm on the relevant integration timescales between 2 and 100 s. The detections confirm that the sensitivity and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for VLBI observations at 870μm. Operation at this short wavelength, combined with anticipated enhancements of the EHT, will lead to a unique high angular resolution instrument for black hole studies, capable of resolving the event horizons of supermassive black holes in both space and time. 
    more » « less